

University of Brussels (ULB) June 10, 2015

COEURE Economic approaches to Energy, Environment and Sustainability

Referee report:
Disruptive analysis for drastic & urgent transition changes

Aviel Verbruggen
University of Antwerp
Member of IPCC (1998-2014)
www.avielverbruggen.be

Focus on Climate change & climate policy

- IPCC Assessment Reports (1990, 1995, 2001, 2007, 2013-14) + Special Report Renewable Energy 2012
- Stern (2006): drastic & urgent change Δ
- Earlier Δ: WCED (1987) Sustainable Development Radical Political Economy program iff

Full contents & message is maintained e.g. Politics as center of 4 dimensions

Sustainable Development: 4 dimensions (WCED)

PLANET Care for nature &

environment
(first comes the climate)

Innovate:

Use energy efficiently, Sun, Wind, Water, Bio flows

Priority for the Public Good

Price externalities Regulate markets POLITICS
GOOD GOVERNANCE
POLICIES

New perspective, institutions, rules, leaders, language,

Inclusion Participation Democracy

PROSPERITY

Limit wealth accumulation to the level attainable by all people forever

Prioritize Investments & Technology for sustainability

Limit population growth.

Economic growth for poor countries

PEOPLE COMMUNITY LIFE

Universiteit Antwerpen

Environmental-ecological economics Survey paper omits

- Decision-making under uncertainty (1960/70s)
 - 1960s: Decision Analysis (e.g. Time-sequential reality)
 - 1970s: 'quasi option'
 - 1990s: for mitigation action, economists recommend 'wait & learn' ⇔ 'choose or lose' [due to confusing reversibility and revocability]
- Decision context
 space of:
 decision components
 [events, actions, outcomes]
 - Time (nearby to infinity)
 - Doubt (risk, uncertainty, ignorance)
 - Reversibility (flexible, rigid, precluded ... irreversible)

Decision Context

Reversibility definition Substantiated by three attributes Reversal costs Mostly High Extremely High Substitutability Infinitely costly **Duration of impacts** Easy Years - Decades Difficult **Decades - Centuries** Very Difficult to impossible Centuries - Millenniums Univers Leit Antwerpen Perpetuity

Climate policy % Context complexity

What kind of policy?

1. Uniformity Fetish: simplistic policy

2. Complexity Syndrome: clumsy policy

3. Rational policies:
Optimal specificity (diverse)
Multilevel
Polycentric

Rational climate policy

Climate *policy* is complicated, contentious, ... not complex if managed by

- 1) Problem decomposition
- Mitigation: by GHG source: energy-related, land use, industrial gases; by societal-economic sector; by region; by emitting activities & related actors
- Adaptation: by hazard, sector, region, exposed people
- 2) Time-sequential decision-making
- yearly rolling baselines
- ❖ yearly pledges & reviews, e.g. reducing Cpp [CO₂ per person] and controlling main drivers
- 3) Political economy of energy interests, power, money

The Uniformity Fetish in Climate Policy

- Economics worship the uniform incentive:
 - The Globally Harmonized Carbon Tax
 - Unique Carbon Prices clearing Emissions Trading markets
- Such uniform carbon price is a mirage (fake)
 - What is a globally harmonized carbon tax for Benin,
 Belarus, Belgium, Bolivia, Bulgaria, ...etc... ?
 - Emissions trading is disfunctional when diverse activities are amalgamated • markets function if well segmented

 - Unequal landscapes are not flattened by a blanket cover
 - Triggering billions of diverse actors in trillions of daily activities requires adjusted pressure levels

Optimal incentive doses are Specific Climate Policy: Multilevel, Polycentric & Diverse

Cascade

1. Sustainable: ambient renewable energy flows = nature decides where & when sources deliver

2. Secure ≠ all energy wishes instantly satisfied [security ≠ reliability ≠ obesity]

3. Affordable: by technological innovation redundant capacities

Case: electricity sector transition

Lock-in (2014-....) Large energy companies Magritte Group % EU Commission % Nuclear discourse

- Magritte Group (March 19, 2014) recommends:
 - Preference for 'mature renewables in the regular market'
 - Priority to the utilization of existing competitive power capacity rather than subsidizing new constructions
 - Restore the ETS as a flagship climate and energy policy
- EU (April 9, 2014) New Energy State Aid Guidelines
 - Refrain the German Energiewende
 - Payments for UK coal power capacity
 - Subsidize planned EDF EPR at UK Hinkley Point (€115/ MWh during 35 years)
- Nuclear discourse molds fake reality
 - IAEA & IPCC option low-carbon (⇔ renewables)
 - No real sustainability assessment

Conclusion

Drastic & urgent transition changes

- Energy sector: double transformation to mainly flow renewable electricity supplies
 - German Energiewende as locomotive

 Lock-in by major companies,
 with the 2014 EU State Aid guidelines as substrate
- Third chance for nuclear power by old promises?
 - IAEA discourse adopted by IPCC in 2014
 - Substitute 'decarbonisation' for 'sustainability' (i.e. sustainability assessment no longer needed)
- Ongoing trust in non-performing uniform instruments
 - ETS as typical example (actually a showcase of captured regulation via comitology)
- Thorough critical analyses pave disruptive pathways