

UCLouvain Changements climatiques: impacts et solutions Louvain-la-Neuve, 29 avril 2019

Economics and Climate Policy Focus on EU Emissions Trading System

Aviel Verbruggen
University of Antwerp

www.avielverbruggen.be

MOTTO:

Prefer to speak true words receiving blame, above deceiving advice in soliciting praise

Overview Lecture (+39 slides)

Framework for addressing environmental issues +4

- 1. Benefits-Costs economics (basics) +5
- 2. Anatomy of EU ETS (economic instrument) +14
- 3. Learning (US SO₂ policy; EU's Tradable Green Certificates) +3
- 4. Reality check on carbon prices +10
- 5. Evaluation & Future +3

Causal logic D-P-S-I

Closing the cycles DPSI@R

1. Benefits-Costs Economics

Abatement (private) ⇔ Damage (public)

- Abatement (mitigation, compliance)
 - Investment in emission reduction technology
 - Operational costs of installations
 - Transaction costs
 - Fuel and material substitution
 - Loss in output
 - **₹** with reduction of emissions (q°-q) tons
- Damage costs ← reduced damage = benefits
 - Loss of amenities, well-being, beauty
 - Material damage to buildings, crops, etc.
 - Health impacts and risks (mortality, morbidity)
 - Loss of nature, biodiversity
 - Cost of protection and compensation
 - Adaptation costs
 - with higher concentration of GHG (ppm)

1. Benefits-Costs Economics

Matching abatement & damage: conceptual + practical challenging

1. Benefits-Costs Economics

EU ETS cradle

[Reading time: 40"]

At COP3 (Kyoto, Dec. 1997), the EU <u>reluctantly</u> accepted emissions trading as a climate policy instrument.

Soon, DG Environment minds were <u>reprogrammed</u>: *emissions trading markets* would innovate mitigation solutions to save the climate.

Spurred by <u>energy corporates</u> & neoclassical economists, the EC <u>freshmen</u> believed in the superiority of ETS .

From economics textbooks + superficial scan of the US SO₂ program, a too ambitious, simplistic <u>'cap-and-trade' market design</u> emerged.

In reality, free permits, fraud, rent skimming, absent innovation, ... turned the dream in a nightmare, covered by <u>deceiving discourses</u>.

More clarity about concepts, components, relations, mechanisms, influencing, etc. is necessary. Clarifying the anatomy of ETS is an important step.

ETS debate: issues & choices

☐ Economic	s & benefits-costs frame dominates
□ 'Money	makes the world go round'
☐ Price ev	erything - only what is priced, is relevant
☐ Based o	on aggregates/averages - hides unequality, diversity
□ Assume	es unlimited substitutability – hides irreversibility
□ Urgency o	of action & results
□ Atmosp	here & Climate disruption is irreversible
□ No time	for lenient experiments, 'global carbon trading'
□ ETS debat	e is unwieldy
□ Non-ec	onomic views neglected
□ Facts ol	oscured - next phase will be better (remind atoms)
* pricin	ture addresses the <u>economics core</u> of ETS, i.e.: g GHG (carbon) emissions
* price	induced innovation (IPCC WG3 IAM)

Merriam Webster's Collegiate Dictionary:

Anatomy: 'the art of separating the parts of an organism in order to ascertain their position, relations, structure and function' (mostly, pictures support the descriptions).

An ETS holds 4 constituent parts:

- [i] Policy goals
- [ii] Costs of GHG abatement (mitigation, compliance)
- [iii] Carbon emissions prices
- [iv] Allocations of tradable emissions permits
- every part = range of options (within constraints)
- assemblage of particular options = ETS exemplar

Component [i] Two major policy goals for EU ETS

A-goal - Atmosphere

- = pursue Atmospheric stability and cleanness
 - > emitting (industrial) activities
 - > carbon emissions down 80-95%
 - > by the nearest date (before 2050)
 - + induce disruptive de-carbonizing innovations
 - ++ higher carbon emissions prices as inducing force

II-goal – Profit / Protection of industries

- = maintain/expand EU's industrial activities
 - > businesses, employment
 - >> profits
 - + avoid 'carbon leakage'
 - ++ no € burdens on Emissions-Intensive Trade-Exposed (EITE) industries

Are the two goals reconcilable?

2. Anatomy of ETS

Universiteit Antwerpen

2. Anatomy

Innovations in compliance, induced by high Carbon prices, shift cost curves and reduce optimal Intensities

17

Universiteit Antwerpen

Without inducing carbon prices: <u>autonomous</u> innovations (ceteris paribus, other innovation drivers excluded)

Carbon Emission Intensity

Component [iii] Carbon emissions pricing

GHG Concentration in the atmosphere, every year adding a few ppm, due to the yearly GHG emissions
UNIVERSITEIT Antwerpen

GHG Emissions (ton)

Universiteit Antwerpen

21

Component [iv] Allocation of tradable emissions permits

LEVIES

- Yearly auctioning of shrinking year quota
- Auctioning of quota for a trade period of a few years
- Auctions spread over years, following the demand for permits
- Partial auctioning, partial free gifts
- Assign permits to the principle MACi = λ
- Assigning expected BAT emissions
- Grandfathering

Findings from Anatomy study

- . ETS exemplars depend on assembled selection of component options
- . Conflicting goals require different exemplars
- . EU ETS successful in protecting (serving) the interests of EU's large industries
- . High-price [with high-cost for industry] EU ETS exemplar is unlikely [the more sticky MACs are]

3. Learning from USA

Characteristics of US SO₂ program

	Single segment of acid pollution
	□ SO₂ from USA coal fired power stations, production tech fully known
	■ NOx regulated in separate segments
	☐ Leakage not an issue
	ow abatement expenses
	□ Mainly low-sulfur coal substituted for high-sulfur coal□ Mature add-on technologies (scrubbers)□ Lousy cap did not need advanced scrubbers
	Rich regulatory bequest at the start in 1990
	☐ Sector regulated by state PUCs, coordinated by NARUC
	☐ EPA since 1970: capable, diligent, informed,
□ S	Stringent EPA policy making above market functioning □ Free permits; 2.8% of cap auctioned + return of revenues
	□ Banking of permits as extra flexibility
	☐ Few trade across non-affiliated companies

EU's Tradable Green Certificates (TGC)

■ 1999:EC promotes TGC for pan-European RE support ☐ Germany resisted and saved Feed-In Tariff (FIT) support ☐ A few TGC were set-up: Frehsman Flanders exemplary □ Salient attributes & results of TGC □ Amalgamate all RE supplies {source x technology} □ Single price per certificate (= per MWh generated) ☐ Huge excess profits (euphemism: 'windfalls') ■ No technological innovation □ 'Market' metamorphosed in ruling à la tête du client ⇔ Technology specific FIT support for solar PV + wind □ Affordable, fast, deep, tech. development success □ Economists: 'FIT expensive', 'perverse effects on ETS'

3. Learning from green electricity support

Universiteit Antwerpen

4. Reality check

Mission of Climate Policy Purpose of policy instruments (ETS): Deep De-Carbonization

Innovation is the magic key to
* low-costing abatement, mitigation
* new products, practices, institutions, ...

ETS 'price induced innovation' credo =>

- Hammering on high carbon prices
- > Shifts in Marginal Abatement Cost curves

We investigate Carbon prices & MAC shifts

Carbon price or prices

□ Holy grail of neo-classical (neoliberal) economists □ Either 'harmonized global CO₂-eq levy/tax rate' (fixed) ☐ Or: 'uniform ETS permit prices' (volatile) □ 'Money makes the world go round' affects all people □ Maximize Benefits (revenues) + Minimize Costs (expenses) \square Self-interest keeps economic order (\approx gravity in physics) □ Movement = overcoming gravity & short-near self-interest □ Confusion price (€/unit) % bill (quantity of €) ☐ If one unit (house, car): price = bill \square If many units (kWh, ton CO₂): price << bill □ Real economic decisions are based on bills, not on prices (see: 'capital budgeting' for business investments)

4. Reality check

Economics Theory: welfare maximum by Short-Run Marginal Cost (SRMC) pricing

[Ramsey - Boiteux - Steiner]

Universiteit Antwerpen

EU ETS in practice

- Free Permits up to 'benchmarked' emission levels
 - Permit price = penalty on emissions beyond
 - > No trade in permits, but trade in penalties
- ETS advocates' discourse: 'Tail wags Dog'
 - ♦ ⇔ Marginal is derivative of total (not the reverse)

Trivialities about Price ● Quantity ● Bills ※ Values
P=Price s=sufficient amount f=fringe amount V=Value/unit

Applied Price	Received Quantity	Paid Bill	Bill-Value link	Obtained Value
Р	0	0	=	0
Р	1	Р	≈	V
Р	S	s.P	≈	s.V
0	1	0	<	V
0	S	0	<<<<	s.V
Р	f	f.P	<<<<	(s+f).V

Universiteit Antwerpen

Tail wags dog

Free barrels & Trade in cups: short

vs. long

FREE

millions tons CO2-eq emissions

'Tail wags dog': CP = price on the emissions fringe of installations is believed to incentivize emissions reductions + carbon innovation

- **⇔** Firms trade hoarded and surplus permits
- **⇔** Source of excess (windfall) profits
- ⇔ Actual emissions bill of firms ≈ € 0
- Deceiving CP concept

4. Reality check

Climbing the Emissions Reduction Slope via Interior Stair

TAX RATE €/unit

emissions

4. Reality check

Free quota + fringe pricing of permit-shortfalls. The economics logic of a rational polluter

Universiteit Antwerpen

4. Reality check

Free quota + fringe pricing of permit-shortfalls = Exterior stair **MAC** €/ton **Permit-shortfalls =** fringe price steps

emissions

4. Reality check

Exterior stair = unstable construction

Trade in penalties: volatile prices ⇔ solid stair

E/ton

Innovation / Reduced Activity

Law of Gravity no

emissions

longer valid?

Dubious ETS Carbon Prices

	TS permit prices
	□ Fringe price ≠ marginal price
	□ ETS unique selling point 'uniform carbon price sets MAC _i equal = minimum total AC' is hollow
	□ Phase 1 & 2 [2005-2012]: 98% of permits free + banking into Phase 3: 2.3 billion permits hoarded + windfalls, fraud
	□ Phase 3: auction for power generators (prices €5 to €8) + EITE activities get free permits (bill ≈ 0)
□ W	ho pays the ETS bills?
	Electricity consumers are charged the ETS bills
	However, governments (UK, Germany, Belgium,) reimburse EITI 75-85% the ETS driven costs on their electricity bills
	Finally: non-ETS electricity consumers pay the ETS
	A considerable price increase = huge profits on the hoarded permit stock in 2018, before the MSR starts in 2019

4. Reality check

ETS posted prices 2009-2019

(Source: Market Insider, 19 April 2019)

Significant increase since last two years: from €6 to €25/permit

ETS helpful for climate policy?

□ Untill today?
 □ After 2005: RWE, EON, GDF-SUEZ started construction of large scale coal plants in the Netherlands, Germany, ...
 □ ETS has not pulled decarbonization innovations
 □ Almost 20 precious years have been irrevocably lost, causing more irreversible losses to the globe's climate
 □ Phase 4 [2020-2030]
 □ In 2019: metamorphosis from cap-and-trade to a collar (bottom & ceiling) price control (Market Stability Reserve)
 □ Otherwise, no major changes
 □ One more decade lost?

Can ETS survive high permit prices?

□ Yes ☐ When roll-of mechanisms persist: the non-ETS electricity consumers pay the bill ☐ However, pivotal role of electric power corporates may be undermined by fast growth in solar & wind supplies No, when prices are charged on industrial emissions ☐ Industries cannot, will not, pay twice: a yearly permits bill + investments in de-carbonizing innovations, i.e. □ price induced innovation is mostly fiction; the more fictituous, the more sticky the MAC curves are □ Carbon leakage is then likely to occur □ More likely is that industry will quit (blow-up) the ETS

Has GHG emissions trading a future?

Prerequisites:

- Diversity & Segmented' substitutes for 'Amalgamation & Uniform' in handling emission sources & applying economic instruments.
- Submit Policies & Instruments to Sustainability Assessment
- Accord with stimuli for decarbonization innovations, which are more important than market mechanisms
- * Revise belief in uniform price induced innovation
- ☐ Yes, GHG emissions trading may play a role
 - When organized per industrial sector / subsector
 - □ On a global scale, e.g, all cement plants (> some size) to preclude leakage
 - □ Foster flexibility above permit trade

The EU ETS being a scam, generates two feelings:

- **Relief**: better climate policy is feasible after breaking the deception
- **Responsibility**: find new effective, efficient and fair policies