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Annex Il

Annex Il Recent Renewable Energy Cost and

Performance Parameters

Annex Il is intended to become a ‘living document’, which will be
updated in the light of new information in order to serve as an input to
the IPCC Fifth Assessment Report (AR5). Scientists that are interested in
supporting this process are invited to contact the IPCC WG IlI Technical
Support Unit (TSU) (using srren_cost@ipcc-wg3.de) in order to get fur-
ther information concerning the submission process." Comments and
new data input will be considered for inclusion in Volume 3 of the IPCC
AR5 according to the procedures of the IPCC review system.

This Annex contains recent cost and performance parameter informa-
tion for currently commercially available renewable power generation
technologies (Table A.lI1.1), heating technologies (Table A.l1l.2) and bio-
fuel production processes (Table A.lI1.3). It summarizes information that
determines the levelized cost of energy or energy carriers supplied by
the respective technologies.

The input ranges are based on assessments of various studies by authors
of the respective technology chapters (Chapters 2 through 7). If not
stated otherwise, the data ranges provided here are worldwide aggre-
gates. Data are generally for 2008, but can be as recent as 2009. They
represent roughly the mid-80% of values found in the literature, hence,
excluding outliers. The availability and quality of different sources of
data varies significantly across individual technologies for a variety of
reasons.? Some expert judgment is therefore required to determine data
ranges that are representative of particular classes of technologies and
specific periods of time and valid globally.

The references to specific information are quoted in the footnotes. If the
full dataset is based on one particular reference, it is included in the ref-
erence column of the green part of the table. Further information on the
data reported in the table is provided in the footnotes and in Chapters
2 through 7 (see in particular Sections 2.7, 3.8, 4.7, 5.8, 6.7 and 7.8).

1 Noindividual responses can be guaranteed, but all emails as well as relevant mate-
rial attached to those emails will be archived and made available in appropriate form
to the authors involved in the AR5 process.

2 No standardized uncertainty language has been used in this report. Nonetheless, the
authors of this Annex have carefully assessed available data and highlighted data
limitations and uncertainties in the footnotes. A fair impression of the breadth of the
reference base can be deduced from the list of references in this Annex.
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The levelized cost of electricity (LCOE), heat (LCOH) and transport
fuels (LCOF)? are calculated based on the data compiled here and the
methodology described in Annex Il, using three different real discount
rates (3, 7 and 10%). They represent the full range of possible levelized
cost values resulting from the lower and upper bounds of input data in
this table. More precisely, the lower bound of the levelized cost ranges is
based on the low ends of the ranges of investment, operation and main-
tenance (O&M) and (if applicable) feedstock cost and the high ends of
the ranges of capacity factors and lifetimes as well as (if applicable) the
high ends of the ranges of conversion efficiencies and by-product rev-
enue stated in this table. The higher bound of the levelized cost ranges
is accordingly based on the high end of the ranges of investment, 0O&M
and (if applicable) feedstock costs and the low end of the ranges of
capacity factors and lifetimes as well as (if applicable) the low ends of
the ranges of conversion efficiencies and by-product revenue.*

These levelized cost figures (violet parts of the tables) are discussed in
Sections 1.3.2 and 10.5.1 of the main report. Most technology chapters
(Chapters 2 through 7) provide more detail on the sensitivity of the lev-
elized costs to particular input parameters beyond discount rates (see
in particular Sections 2.7, 3.8, 4.7, 5.8, 6.7 and 7.8). These sensitivity
analyses provide additional insights into the relative weight of the large
number of parameters that determine the levelized costs under more
specific conditions.

In addition to the technology-specific sensitivity analysis in the respec-
tive chapters (Chapters 2 through 7) and the discussions in Sections
1.3.2.and 10.5.1, Figures A.111.2 through A.111.4 (a, b) show the sensitivity
of the levelized cost in a complementary way using so-called tornado
graphs (Figures A.lIl.2 through A.lll.4 a) as well as their ‘negatives’
(Figures A.111.2 through A.lIl.4 b).

Figures A.lll.1a and A.lll.1b show schematic versions of the tornado
graphs and their ‘negatives’, respectively, explaining how to read them
correctly.

3 The levelized cost represents the cost of an energy generating system over its life-
time. It is calculated as the per unit price at which energy must be generated from
a specific source over its lifetime to break even. The levelized costs usually include
all private costs that accrue upstream in the value chain, but they do not include the
downstream cost of delivery to the final customer, the cost of integration, or external
environmental or other costs. Subsidies for RE generation and tax credits are not
included. However, indirect taxes and subsidies on inputs or commodities affecting
the prices of inputs and, hence, private cost, cannot be fully excluded.

4 This approach assumes that input parameters to the LCOE/LCOH/LCOF calculation
are independent from each other. This is a simplifying assumption that implies that
the lower ranges of LCOE/LCOH/LCOF (as a combination of best-case input values)
may in some cases be lower than is most often the case, while the upper range of
LCOE/LCOH/LCOFs (as a combination of worst-case input values) may in some cases
be higher than what is generally considered economically attractive from a private
investors’ perspective. The extent to which this approach introduces a structural bias
in the LCOE/LCOH/LCOF ranges, however, is reduced by taking a rather conservative
approach to the range of input values (partly involving expert judgement), that is, by
restricting input values roughly to the medium 80% range where possible.
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This is the range of possible levelized cost
values that results for technology A, if only the
dark red parameter is NOT set to its arithmetic
average, BUT varied from its lowest to its
highest value.

Technology A

» Levelized Cost
of Electricity,
Heat or Fuels

Medium Levelized Cost Value
of Technology A.

This is the value that results from
using the arithmetic averages of

the input parameter values stated

in the data tables and a 7% discount
rate to compute the levelized cost.

Figure A.lll.1a | Tornado graph. Starting from the medium levelized cost value at a 7% interest rate, a broader range of levelized cost values becomes possible if individual parameters
are varied over the full of range of values that these parameters may take on under different conditions. If the LCOE/LCOH/LCOF of a technology is very sensitive to variation of a
particular parameter, then the corresponding bar will be broad. This means that a variation of that particular parameter may lead to LCOE/LCOH/LCOF values that can deviate strongly
from the medium LCOE/LCOH/LCOF value. If the LCOE/LCOH/LCOF of a technology is robust for variations of the respective parameter, the bars will be narrow and only slight devia-
tions from the medium LCOE/LCOH/LCOF value may result from variation of that parameter. Note, however, that no or narrow bars may also be the result of no or limited variation of
the input parameters.

This is the full range of
possible levelized cost
values for technology A.

Technology A

» Levelized Cost
of Electricity,
Heat or Fuels

This is the narrower range of
possible levelized cost values
that results for technology A, if
only the blue parameter is set to
its arithmetic average, while all
others vary freely.

Figure A.lI1.1b | ‘Negative’ of tornado graph. Starting from the low and high bounds of the full range of levelized cost values at a 3% and 10% interest rate, respectively, a narrower
range of levelized cost values remains possible if individual parameters are fixed at their respective medium values. If the LCOE/LCOH/LCOF of a technology is very sensitive to varia-
tions of a particular parameter, then the corresponding bar that remains will be narrowed to a large degree. Such parameters are of particular importance in determining the LCOE/
LCOH/LCOF under more specific conditions. If the LCOE/LCOH/LCOF of a technology is robust for variations of the respective parameter, the remaining range will remain close to the
full range of possible LCOE/LCOH/LCOF values. Such parameters are of less importance in determining the LCOE/LCOH/LCOF more precisely. Note, however, that no or small deviations
from the full range may also be the result of no or limited variation of the input parameters.
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Xviii
XiX
XX

Heat output used for hot water is 12.95 GJ of heat per MWh electricity.
ICE: Internal combustion engine.
Heat output used for hot water is in the range of 2.373 to 10.86 GJ/MWh.

Direct solar energy — photovoltaic (PV) systems:

XXi

XXii

Xxiii

XXV

In 2009, wholesale factory PV module prices decreased by more than 50%. As a result, the market prices for installed PV systems in Germany, the most competitive market,
decreased by over 30% in 2009 compared to about 10% in 2008 (see Section 3.8.3). 2009 market price data from Germany is used as the lower bound for investment
costs of residential rooftop systems (Bundesverband Solarwirtschaft e.V., 2010) and for utility-scale fixed tilt systems (Bloomberg, 2010). Based on US market data for

2008 and 2009, larger, commercial rooftop systems are assumed to have a 5% lower investment cost than the smaller, residential rooftop systems (NREL, 2011b; see also
section 3.8.3). Tracking systems are assumed to have a 15-20% higher investment cost than the one-axis, non-tracking systems considered here (NREL, 2011a; see also
Section 3.8.3). Capacity-weighted averages of investment costs in the USA in 2009 (NREL, 2011b) are used as upper bound to capture the investment cost ranges typical of
roughly 80% of global installations in 2009 (see Section 3.4.1 and Section 3.8.3).

0&M costs of PV systems are low and are given in a range between 0.5 and 1.5% annually of the initial investment costs (Breyer et al., 2009; [EA, 2010c).

The main parameter that influences the capacity factor of a PV system is the actual annual solar irradiation in kWh/m2/yr at a given location and the type of system.
Capacity factors of some recently installed systems are provided in Sharma (2011).

The upper limit of utility-scale PV systems represents current status. Much larger systems (up to 1 GW) are in the proposal and development phase and might be realized
within the next decade.

Direct solar energy — concentrating solar power (CSP):

XXV

XXV

XXVii

XXViii

Project sizes of CSP plants can minimally match the size of a single power generating system (e.g., a 25 kW dish/engine system). However, the range provided is typical for
projects being built or proposed today. ‘Power Parks' consisting of multiple CSP plants in a single location are also being proposed at sizes of up to or exceeding 1 GW (4 x
250 MW).

Cost ranges are for parabolic trough plants with six hours of thermal energy storage in 2009. Investment cost includes direct plus indirect costs where indirect costs include
engineering, procurement and construction mark-up, owner costs, land, and taxes. Investment costs are lower for plants without storage and higher for plants with larger
storage capacity. The IEA (2010a) estimates investment costs as low as USD, . 3,800/kW for plants without storage and as high as USD, . 7,600/kW for plants with large
storage (assumed currency base year: 2009). Capacity factors vary as well, if thermal storage is installed (see note xxviii).

2005

The IEA (2010a) states O&M costs relative to energy output as US¢ 1.2 to 2.7/kWh (assumed currency base year: 2009). Depending on actual energy output this may result
in lower or higher annual O&M cost compared to the range stated here.

Capacity factor for a parabolic trough plant with six hours of thermal energy storage for solar resource classes typical of the southwest USA. Depending on the size of the
thermal storage capacity, capacity factors as well as investment costs vary substantially. Apart from the Solar Electric Generating Station plants in California, new CSP plants
only became operational from 2007 onwards, thus few actual performance data are available and most of the literature just gives estimated or predicted capacity factors.
Sharma (2011) reports multi-year (1998-2002) average capacity factors of 12.4 to 27.7% for plants without thermal storage, but with natural gas backup. The IEA (2010a)
states that plants in Spain with 15 hours of storage may produce up to 6,600 hours per year. This is equivalent to a 75% capacity factor, if production occurs at full capacity
during the 6,600 hours. Larger storage also increases investment costs (see note xxvi).

Geothermal energy:

XXX

XXX

XXXi

XXXii

Investment cost includes: exploration and resource confirmation; drilling of production and injection wells; surface facilities and infrastructure; and the power plant. For
expansion projects (i.e., new plants in the same geothermal field) investment costs can be 10 to 15% lower (see Section 4.7.1). Investment cost ranges are based on
Bromley et al. (2010) (see also Figure 4.7).

0&M costs are based on Hance (2005). In New Zealand, 0&M costs range from US¢ 1 to 1.4/kWh for 20 to 50 MW_plant capacity (Bamett and Quinlivan, 2009), which
are equivalent to USD 83 to 117/kW/yr, i.e. considerably lower than those given by Hance (2005). For further information see Section 4.7.2.

The current (data for 2008-2009) worldwide capacity factor (CF) for condensing (flash) and binary-cycle plants in operation is 74.5%. Excluding some outliers, the lower
and upper bounds can be estimated as 60 and 90%. Typical CFs for new geothermal power plants are over 90% (Hance, 2005; DiPippo, 2008; Bertani, 2010). The
worldwide average CF for 2020 is projected to be 80%, and could be 85% in 2030 and as high as 90% in 2050 (see Sections 4.7.3 and 4.7.5).

25 to 30 years is the common lifetime of geothermal power plants worldwide. This payback period allows for refurbishment or replacement of the aging surface plant at
the end of its lifetime, but is not equivalent to the economic resource lifetime of the geothermal reservoir, which is typically much longer (e.g., Larderello, Wairakei, The
Geysers: Section 4.7.3). In some reservoirs, however, the possibility of resource degradation over time is one of several factors that affect the economics of continuing plant
operation.

Hydropower:

Xxxiii

XXXIV

XXXV

1006

The mid-80% of project sizes is not well documented for hydropower. The range stated here is indicative of the full range of project sizes. Hydropower projects are always
site-specific as they are designed to use the flow and head at each site. Therefore, projects can be very small, down to a few kW in a small stream, and up to several
thousand MW, for example 18,000 MW for the Three Gorges project in China (which will be 22,400 MW when completed) (see Section 5.1.2). 90% of the installed
hydropower capacity and 94% of hydropower energy production today is in hydropower plants >10 MW in size (IJHD, 2010).
The investment cost for hydropower projects can be as low as USD 400 to 500/kW but most realistic projects today lie in the range of USD 1,000 to 3,000/kW (Section
5.8.1).
O&M costs are usually given as a percentage of investment cost for hydropower projects. Typical values range from 1 to 4%, while the table relies on an average value of
2.5% applied to the range of investment costs. This will usually be sufficient to cover refurbishment of mechanical and electrical equipment like turbine overhaul, generator
rewinding and reinvestments in communication and control systems (Section 5.8.1).

Continued next page =
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XXXV

XXXVii

Capacity factors (CF) will be determined by hydrological conditions, installed capacity and plant design, and the way the plant is operated (i.e., the degree of plant output
regulation). For power plant designs intended for maximum energy production (base-load) and with some regulation, CFs will often be from 30 to 60%. Figure 5.20 shows
average CFs for different world regions. For peaking-type power plants the CF will be much lower, down to 20%, as these stations are designed with much higher capacity
in order to meet peaking needs. CFs for run-of-river systems vary across a wide range (20 to 95%) depending on the geographical and climatological conditions, technology
and operational characteristics (see Section 5.8.3).

Hydropower plants in general have very long physical lifetimes. There are many examples of hydropower plants that have been in operation for more than 100 years, with
regular upgrading of electrical and mechanical systems but no major upgrades of the most expensive civil structures (dams, tunnels, etc.). The IEA (2010d) reports that many
plants built 50 to 100 years ago are still operating today. For large hydropower plants, the lifetime can, hence, safely be set to at least 40 years, and an 80-year lifetime is
used as upper bound. For small-scale hydropower plants the typical lifetime can be set to 40 years, in some cases even less. The economic design lifetime may differ from
actual physical plant lifetimes, and will depend strongly on how hydropower plants are owned and financed (see Section 5.8.1).

Ocean Energy:

XXXViii

XXXIX

Xl
xli

The data supplied for tidal range power plants are based on a very small number of installations (see subsequent footnotes). Therefore, all data should be considered with
appropriate caution.

The only utility-scale tidal power station in the world is the 240 MW La Rance power station, which has been in successful operation since 1966. Other smaller projects have
been commissioned since then in China, Canada and Russia with 3.9 MW, 20 MW and 0.4 MW, respectively. The 254 MW Sihwa barrage is expected to be commissioned

in 2011 and will then become the largest tidal power station in the world. Numerous projects have been identified, some of them with very large capacities, including in the
UK (Severn Estuary, 9.3 GW), India (1.8 GW), Korea (740 MW) and Russia (the White Sea and Sea of Okhotsk, 28 GW). None have been considered to be economic yet and

many of them face environmental objections (Kerr, 2007). The projects at the Severn Estuary have been evaluated by the UK government and recently been deferred.

An earlier assessment suggests capacity factors in the range of 25 to 35% (Charlier, 2003).

Tidal barrages resemble hydropower plants, which in general have very long design lives. Many hydropower plants have been in operation for more than 100 years, with
regular upgrading of electro-mechanical systems but no major upgrades of the most expensive civil structures (dams, tunnels etc). Tidal barrages are therefore assumed to
have a similar economic design lifetime as large hydropower plants, which can safely be set to at least 40 years (see Chapter 5).

Wind energy:

xlii

xliii

xliv
xlv

Xlvi

Typical size of the device is taken as the power plant (not turbine) size. For onshore wind energy, 5 to 300 MW plants were common from 2007 to 2009, though both
smaller and larger plants are prevalent. For offshore wind energy, 20 to 120 MW plants were common from 2007 to 2009, though much larger plant sizes are expected in
the future. As a modular technology, a wide range of plant sizes is common, driven by market and geographic conditions.

The lowest cost onshore wind power plants have been installed in China, with higher costs experienced in the USA and Europe. The range reflects the majority of onshore
wind power plants installed worldwide in 2009 (the most recent year for which solid data exist as of writing), but plants installed in China have average costs that can be
even below this range (USD 1,000 to 1,350/kW is common in China). In most cases, the investment cost includes the cost of the turbines (turbines, transportation to site,
and installation), grid connection (cables, sub-station, interconnection, but not more general transmission expansion costs), civil works (foundations, roads, buildings), and
other costs (engineering, licensing, permitting, environmental assessments, and monitoring equipment).

Capacity factors depend in part on the strength of the underlying wind resource, which varies by region and site, as well as by turbine design.

Modern wind turbines that meet International Electrotechnical Commission standards are designed for a 20-year life, and turbine lifetimes may even exceed 20 years if O&M
costs remain at an acceptable level. Wind power plants are typically financed over a 20-year time period.

For offshore wind power plants, the range in investment costs includes the majority of offshore wind power plants installed in the most recent years (through 2009) as
well as those plants planned for completion in the early 2010s. Because costs have risen in recent years, using the cost of recent and planned projects reasonably reflects
the "current’ cost of offshore wind power plants. In most cases, the investment cost includes the cost of the turbines (turbines, transportation to site, and installation),
grid connection (cables, sub-station, interconnection, but not more general transmission expansion costs), civil works (foundations, roads, buildings), and other costs
(engineering, licensing, permitting, environmental assessments, and monitoring equipment).
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Annex Il

Bioenergy (Direct Dedicated & Stoker CHP)

Bioenergy (Co-Firing)

Bioenergy (Small Scale CHP, ORC)

Bioenergy (Small Scale CHP, Steam Turbine)
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Solar PV (Commercial Rooftop)

Solar PV (Utility Scale, Fixed Tilt)
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Figure A.lll.2a | Tornado graph for renewable power technologies. For further explanation see Figure A.lll.1a.
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Fixed Parameter

Bioenergy (Direct Dedicated & Stoker CHP)

Investment Cost

Bioenergy (Co-Firing) Non-Fuel O&M Cost

un

Bioenergy (Small Scale CHP, Steam Turbine) E

Fuel Cost
! Capacity Factor

L
T I

Bioenergy (Small Scale CHP, ORC)

Bioenergy (Small Scale CHP, Gasification ICE) S

-

Solar PV (Utility Scale, Fixed Tilt) ._.

Solar PV (Residential Rooftop)

Solar PV (Commercial Rooftop)

Solar PV (Utility Scale, 1-Axis) t—

Concentrating Solar Power m

Geothermal Energy (Condensing-Flash Plants)

Geothermal energy (Binary-Cycle Plants) E

Hydropower

Ocean Energy (Tidal Range) m
Wind Energy (Off-Shore, Large Turbines) E
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[UScent, _/kWh]

Wind Energy (On-Shore, Large Turbines)

2005
Figure A.1I1.2b | ‘Negative’ of tornado graph for renewable power technologies. For further explanation see Figure A.lll.1b.
Note: The upper bounds of both geothermal energy technologies are calculated based on an assumed construction time of 4 years. In the simplified approach used for the sensitivity

analysis shown here, this assumption was not taken into account, resulting in upper bounds that were below those based on the more accurate methodology. The ranges were rescaled,
however, to yield the same results as the more accurate approach.
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Annex I Recent Renewable Energy Cost and Performance Parameters

Bioenergy:
iv. DPH: Domestic pellet heating.
v This range is typical of a low-energy single family dwelling (5 kW) or an apartment building (100 kW).

vi  Investment costs of a biomass pellet heating system for the combustion plant only (including controls) range from USD
includes civil works and fuel and heat storage (IEA, 2007).

100 to 640/kW. The higher range stated above

2005

vii Fixed annual O&M costs include costs of auxiliary energy. Auxiliary energy needs are 10 to 20 KWh/kW, /yr. Electricity prices are assumed to be USD, . 0.1 to 0.3/kWh. O&M
costs for CHP options include heat share only.

vii  The abbreviation ‘N/A" means here ‘not applicable’.

ix  MSW: Municipal solid waste.

X CHP: Combined heat and power.

xi Typical size based on expert judgment and cost data from IEA (2007).

xii  Investment costs for CHP options include heat share only. The electricity data in Table A.lll.1 provides examples of total investment cost (see Section 2.4.4).

xiii  Investment costs of MSW installations are mainly determined by the cost of flue gas cleaning, which can be allocated to waste treatment rather than to heat production (IEA,
2007).

xiv Heat-only MSW incinerators (as used in Denmark and Sweden) could have a thermal efficiency of 70 to 80%, but are not considered (IEA, 2007).
xv The ranges provided in this category are mainly based on two plants in Denmark and Austria and have been taken from IEA (2007).

xvi  Investment costs for anaerobic digestion are based on literature values provided relative to electric capacity. For conversion to thermal capacity an electric efficiency of 37%
and a thermal efficiency of 55% were used (IEA, 2007).

xvii  For anaerobic digestion, fuel prices are based on a mix of green crop maize and manure feedstock. Other biogas feedstocks include source-separated wastes and landfill gas,
but are not considered here (IEA, 2007).

xviii - Conversion efficiencies include auxiliary heat input (8 to 20% for process heat) as well as use of any co-substrate that might increase process efficiency. For source-separated
wastes, the efficiency would be lower (IEA, 2007).

Solar Energy:
xix ~ DHW: Domestic hot water.
xx 1 m2of collector area is converted into 0.7 kW, of installed capacity (see Section 3.4.1).

xxi 70% of the 13.5 million m? sales volume in 2004 was sold below Yuan 1,500/m? (USD, . ~190/kW) (Zhang et al., 2010). The lower bound is based on data collected during
standardized interviews in the Zhejiang Province, China, in 2008 (Han et al., 2010). The higher bound is based on Chang et al. (2011).

xxii  Fixed annual operating cost is assumed to be 1 to 3% of investment cost (IEA, 2007) plus annual cost of auxiliary energy. Annual auxiliary energy needs are 2 to 10 kWh/m?2.
Electricity prices are assumed to be USD, . 0.1 to 0.3/kWh.

xxiii - The conversion efficiency of a solar thermal system tends to be larger in regions with lower solar irradiance. This partly offsets the negative effect of lower solar irradiance on
cost as energy yields per m2 of collector area will be similar (Harvey, 2006, p. 461). Conversion efficiencies, which affect the resulting capacity factor, have not been used in
LCOH calculations directly.

xxivCapacity factors are based on an assumed annual energy yield of 250 to 800 kWh/m2 (IEA, 2007).
xxv  Expected design lifetimes for Chinese solar water heaters are in the range of 10 to 15 years (Han et al,, 2010).

Geothermal energy:

xxvi For geothermal heat pumps (GHP) the bounds of investment costs include residential and commercial or institutional installations. For commercial and institutional
installations, costs are assumed to include drilling costs, but for residential installations drilling costs are not included.

xxvii Average O&M costs expressed in USD
0.028 to 0.032 for GHP.

005/ KWh, are: 0.03 to 0.04 for building and district heating and for aquaculture uncovered ponds, 0.02 to 0.03 for greenhouses, and
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Biomass (Domestic Pellet Heating) 1 Varied Parameter
. Investment Cost
. . Non-Fuel 0&M Cost
Biomass (MSW, CHP)
[0 Fuel Cost
W conversion Efficiency
; ; Capacity Fact
Biomass (Steam Turbine, CHP) W Capacity Factor
Discount Rate

|
Biomass (Anaerobic Digestion, CHP) ’

Solar Thermal Heating (DHW, China)
Solar Thermal Heating (DHW, Thermo-Siphon, Combi)
Geothermal (Building Heating) |
Geothermal (District Heating) T

Geothermal (Greenhouses) T

Geothermal (Aquaculture Ponds, Uncovered) T

—rl
Geothermal Heat Pumps (GHP)

0 50 100 150 200
[USD, . /GJ]

2005
Figure A.lll.3a | Toado graph for renewable heat technologies. For further explanation see Figure A.lll.1a.
Note: It may be somewhat misleading that solar thermal and geothermal heat applications do not show any sensitivity to variations in conversion efficiencies. This is due to the fact

that the energy input for solar and geothermal has zero cost and that the effect of higher conversion efficiencies of the energy input on LCOH works solely via an increase in annual
output. Variations in annual output, in turn, are fully captured by varying the capacity factor.
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Biomass (Domestic Pellet Heating) ’i Fixed Parameter

. Investment Cost

I . Non-Fuel 0&M Cost
Biomass (MSW, CHP) -3
[0 Fuel Cost

W conversion Efficiency
[ | Capacity Factor
. Discount Rate

T
Biomass (Anaerobic Digestion, CHP) ] ‘
T

Biomass (Steam Turbine, CHP)

Solar Thermal Heating (DHW, China)

I |
Solar Thermal Heating (DHW, Thermo-Siphon, Combi) ﬁ

Geothermal (Building heating)

Geothermal (District heating) r.
[h—— |
Geothermal (Greenhouses) L]
[ |

Geothermal (Aquaculture ponds, uncovered)

Geothermal Heat Pumps (GHP) ﬁ

0 50 100 150 200
[USD,,./GJ]

2005

Figure A.111.3b | ‘Negative' of tornado graph for renewable heat technologies. For further explanation see Figure A.lll.1b.
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Annex I Recent Renewable Energy Cost and Performance Parameters

General remarks/notes:

i All data are rounded to two significant digits. Chapter 2 provides additional cost and performance information in the section on cost trends. The assumptions underlying some
of the production cost estimates quoted directly from the literature may, however, not be as transparent as the data sets in this Annex and should therefore be considered
with caution.

i Investment cost is based on plant capacity factor and not at 100% stream factor, which is the normal convention.

i The feedstock conversion efficiency measured in energy units of input relative to energy units of output is stated for biomass only. Conversion factors for a mixture of biomass
and fossil inputs are generally lower.

iv. LCOF: Levelized Cost of Transport Fuels. The levelized costs of transport fuels include all private costs that accrue upstream in the bioenergy system, but do not include the cost
of transportation and distribution to the final customers. Output subsidies for RE generation and tax credits are also excluded. However, indirect taxes and subsidies on inputs
or commodities affecting the prices of inputs and, hence, private cost, cannot be fully excluded.

v HHV: Higher heating value. LHV: Lower heating value.

vi  Price of / revenue from sugar assumed to be USD 22/GJ,,,, based on average 2005 to 2008 world refined sugar price.

2005

vii A cane sucrose content of 14% is used in the calculations of case A with the additional assumption that 50% of the total sucrose is used for sugar production (97%
extraction efficiency) and the other 50% of the total sucrose is used for ethanol production (90% conversion efficiency). The bagasse content of cane used is 16%. The HHVs
used are bagasse: 18.6 GJ/t; sucrose: 17.0 GJ/t; and as received cane: 5.3 GJ/t.

viii  Brazilian feedstock costs have declined by 60% in the time period of 1975 to 2005 (Hettinga et al, 2009). For a more detailed discussion of historical and future cost trends
see also Sections 2.7.2, 2.7.3 and 2.7.4.

ix  55.2% of feed used is bagasse. More detailed information on feedstock characteristics can, for instance, be found in Section 2.3.1.

x  Caribbean Basin Initiative Countries: Guatemala, Honduras, Nicaragua, Dominican Republic, Costa Rica, El Salvador, Guyana, and others.
xi  Mixed ethanol/sugar mill: 50/50. More detailed information on sugar mills can be found in Section 2.3.4.

xii  DDGS: Distillers dried grains plus solubles.

xiii  For international feed range, supply curves from Kline et al. (2007) were used. For more information on feedstock supply curves and other economic considerations in biomass
resource assessments see Chapter section 2.2.3.

xiv Plant size range (140-550 MW is the equivalent of 25-100 million gallons per year (mmgpy) of anhydrous ethanol) is representative of the US corn ethanol industry (RFA, 2011).

xv Corn prices in the USA have declined by 63% in the period from 1975 to 2005 (Hettinga et al., 2009). For a more detailed discussion of historical and future cost trends see
also Sections 2.7.2,2.7.3 and 2.7.4.

xvi  Based on corn mill costs, corrected for HHV, and distillers dried grain (DDG) yields for wheat. More detailed information on milling can be found in Section 2.3.4.
xvii - Installation basis is soy oil, not soybeans. Crush spread is used to convert from soybean prices to soy oil price. HHV soy oil = 39.6 GJ/t.

xviii - Glycerine is also referred to as glycerol and is a simple polyol compound (1,2,3-propanetriol), and is central to all lipids known as triglycerides. Glycerine is a by-product of
biodiesel production.

xix  The yield is higher than 100% because methanol (or other alcohol) is incorporated into the product.
xx  Soy oil prices are estimated from soybean prices (Kline et al., 2007) and crush spread (Chicago Board of Trade, 2006).
xxi  Process-derived gas and residual solids (char) are used for process heat and power. Excess electricity is exported as a by-product.

xxii  Feedstock cost range is based on bagasse residue and wood residue prices (Kline et al. 2007). High range is for wood-based pyrolysis, low range is typical of pyrolysis of
bagasse. For more information on pyrolysis see Section 2.3.3.2. For a discussion of historical and future cost trends see also Sections 2.7.2, 2.7.3 and 2.7.4.
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Recent Renewable Energy Cost and Performance Parameters Annex I

Sugarcane Ethanol Varied Parameter

. Investment Cost
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Figure A.lll.4a | Tornado graph for biofuels. For further explanation see Figure A.lll. 1a.

Sugarcane Ethanol

Corn Ethanol Fixed Parameter

. Investment Cost
[ Non-Fuel 0&M Cost

B Fuel Cost
. Discount Rate

Wheat Ethanol

Soy Biodiesel

Pyrolytic Fuel Oil
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2005

Figure A.111.4b | 'Negative' of tornado graph for biofuels. For further explanation see Figure A.lII.1b.
Note: Aggregation of input data over various regions and subsequent LCOF calculations leads to slightly larger LCOF ranges than those obtained if region-specific LCOF values are

calculated first and these regional LCOF values are subsequently aggregated. In order to allow for a broad sensitivity analysis the first approach was followed here. The broader ranges
were, however, rescaled to yield the same results as the latter approach, which is more accurate and is used in the remainder of the report.
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