

South Africa, Skukuza HEFAT, July 21, 2015

High-Quality CHP Definition, Measurement and Regulation

Aviel Verbruggen, University of Antwerp Energy & Environmental economics & policy, technically sound IPCC (Intergovernmental Panel on Climate Change) 1998-2014 Latest: sustainability assessment of nuclear power (*C*climate policy)

www.avielverbruggen.be

Universiteit Antwerpen

CHP Definition

CHP is

- •an Activity
- Added on / Embedded in a thermal power unit
- recovering and using
- •all or part of
- Point-source heat exhausts

i.e. CHP is (mainly) a thermal pollution mitigation activity

Quality of thermal power unit with CHP

Hierarchy Thermal power unit

\mathcal{T} CHP activities [0, 1, 2, ...]

Interaction electric output – heat recovery? If T° used heat > T° of heat exhausted β = used heat for power substitution rate = power loss factor

CHP activity

- added on: $\beta = 0$ (gas turbines, IC Engines)
- embedded: $\beta > 0$ affects σ (steam turbines)

Universiteit Antwerpen

CHP Merit

Maximize used heat flow Q_{CHP} (i.e. Heat recovery at thermal point-source pollution) + Maximize ratio σ of power cycle with CHP activity (i.e. minimize recovery impact on power output = keep β 'as low as possible')

Merit indicator: cogenerated electricity $E_{CHP} = \sigma$. Q_{CHP}

 E_{CHP} not observable when CHP activity is partial (e.g. extraction-condensing cycles as main case)

• Calculate E_{CHP} = measured flow $Q_{CHP} \times \sigma$ of specific CHP activity

Power and Heat generation capacities (MW) of an Extraction-condensing steam turbine: total mass flow = 260 kg/s with a maximum 60kg/s extraction over both hot condensers

Unit mass analysis of extraction-condensing steam turbine with two CHP activities

Proper solution of the division problem

Electricity MW

9

Conclusion

Shown E_{CHP} calculator solves a long-standing issue in science, operations, statistics, policy, regulation E.g. flaws in EU Directives 2004, 2012 & High-quality CHP conundrum, with inaccurate separate heat and power generation benchmarks, obstructs CHP activity

Higher clarity about CHP by:

- Proper vocabulary (e.g. CHP activity)
- Design power/heat ratio per CHP activity
- Define proper *merit* of CHP
- Identify partial CHP activity (mixed condensing cogeneration operational modes)

Universiteit Antwerpen

Epilogue

1. Irreversible climate change imposes fast deployment of renewable, fire-free power & heat supplies = almost full energy service by power from solar, wind, water, ...

2. Combustion & explosion processes dwindle, so will waste heat point-sources = vanish CHP opportunities

3. Join an industrial archeology club preserving obsolete thermodynamic power generation machinery of the 20th century?

Thank you for listening Detail is available in the conference paper + on site www.avielverbruggen.be