Practical and Accurate Measurement of Cogenerated Power E_{CHP}

Solving a long-standing issue in science, operations, statistics, policy, regulation

5 September 2016

Aviel VERBRUGGEN

University of Antwerp

Identify E_{CHP} quantities of CHP activities

Case 1: plant cannot reject heat to environment: $E_{CHP} = E_{plant}$ Case 2: CHP activity is partial: $E_{CHP} < E_{plant}$ and E_{CHP} not measurable Calculator needed, based on: $E_{CHP} = \sigma \cdot Q_{CHP}$ **Q**_{CHP} = amount of heat recovered by CHP activity [measured flows] • σ = power-to-heat ratio [WHICH VALUE? ! Enigma ! Circular logic by EU Commission, CEN-CENELEC, academics in journal articles; USA DOE puzzled, etc.] SOLUTION: σ is a design parameter of every CHP activity σ is affected by power loss factors β in steam turbines

The 15th International Symposium on DHC 2016 organised by KDHC

Extraction-condensing steam cycle with two CHP activities

THE 15th INTERNATIONAL SYMPOSIUM ON District Heating and Cooling

The 15th International Symposium on

organised by KDHC

Unit mass analysis in Electricity-Heat plane

The 15th International Symposium on DHC 2016 organised by KDHC

Truncating feasible {E - Q} set by capacity limits on the two Q_{CHP} extraction activities

The 15th International Symposium on DHC 2016 organised by KDHC

Flawed solutions for σ been suggested

The 15th International Symposium on DHC 2016 organised by KDHC

Conclusion

Long-standing issues solved + more clarity about CHP by

- Proper identification & vocabulary, e.g. CHP activity embedded / added
- Design power-to-heat ratio σ per CHP activity
- **E**_{CHP} is correct indicator of CHP merit (external benchmarks are perverse)
- Maximizing $E_{CHP} = \sigma \cdot Q_{CHP}$ holds the right incentives:

Maximize design σ (*quality* of process)

Maximize **Q**_{CHP} (*quantity* of recovered heat)

Thank you for your attention!

Contact: www.avielverbruggen.be

Aviel VERBRUGGEN

aviel.verbruggen@uantwerpen.be

The 15th International Symposium on DHC2@16

THE 15th INTERNATIONAL SYMPOSIUM ON **District Heating and Cooling**
