Climate change: an issue of study and action

September 15, 2021 Aviel Verbruggen, University of Antwerp <u>https://www.avielverbruggen.be</u>

Overview lecture

- **1.** Factors shaping climate and energy policy
- 2. Sustainable Development: Our Common Future
- 3. Sun-Earth energy balance
- 4. Analytical frames of planet-people interactions
 - Metabolism (material balances)
 - Causal sequence VDPSI@R
 - Decomposition of emission sources
- **5.** Evaluation of the frames

FACTORS shaping climate and energy policy

IDEAS Myths Symbols Images Narratives Discourses Ideology Paradigms ... INFLUENCE LEGITIMACY

INSTITUTIONS Habits Norms Rules Laws Institutes ... POLITY **ACTORS**

Citizens, Activists, NGOs Energy, Industrial Companies Employers, Employees, Trade Unions EU Commission, Parliament, Council EU Member States, Cities Financial Institutes, Exchanges International Organisations Scientists, Consultants, ...

on one finite planet, surrounded by one vulnerable atmosphere

SUBSTRATE

Energy HTechnology

TRANSFORMATIONS

INTERESTS Positions Power Knowledge Property Capital Income

MONEY

INFRASTRUCTURES Buildings Transport Production Commerce Recreation

ASSETS

UN World Commission on Environment and Development Brundtland et al. 1987 Our Common Future (OCF)

- Sustainable Development (SD)
 - NOT vague, abstract, remote idol, worshipped to futility in neoliberal discourse
 - YES concrete, hands-on, radical paradigm in OCF-SD
 - Clear goals & constraints (limits)
 - Specific action programs are political-societal constructs
- Operationalize Sustainable Development
 - NOT by glossy brochures, events, selfevaluations
 - YES by comprehensive sustainability assessments of policies, technologies, projects, programs, actions, ...
 - Identify criteria (= attributes to own, results to obtain)
 - OCF provides normative frame (the stem) + assessment adds constructed specificity (branches)

Sustainable Development

iversity of Antwerp MD0 | Institute of Environment

Goal + Substance of Sustainable Development

Sustainable development holds 4 main dimensions. Politics stays central, moulding vision, institutions, discourses; guarding principles; spurring action

Sun-Earth energy balance

Metabolism

Fysics of life: metabolism nature-society interactions

Metabolism

Observed phenomena obey two main physical laws of thermodynamics

Conservation of energy/mass

For example combustion of fossil fuels 'IN = OUT'

- 1 kg petrol (C-H molecules) + 11 kg air (N_2 - O_2 mixture) = 12 kg flue gasses
- > Greenhouse gases: CO_2 , N_2O , CH_4 , F-gases, H_2O vapor
- > Pollution: NOx, Particulate Matter (PM10, PM2.5), PAHs (Poly Aromatic Hydrocarbons), PICs (Products Incomplete Combustion), ...
- Available energy used (by conversion & transfer) to obtain energy services, increases entropy [nett chaos overall (= system + environment)]

Heat flows from High to Low Temperature

Pressures settle (currents from High to Low Pressure)

Mixtures blend spontaneously

•••

`Irreversibility' doom-day alarmism

energy system cycles are repetitive, adding fresh available energy supplies from outside (the system's environment).

Electricity generation from natural currents (wind, light, water) is benign harvesting, keeping doom away. '*Irrevocability*' is proper term for decreasing availability, because substitution is possible

Metabolism

Economy # Environment-Nature [important role for energy]

V-DPSI@R framework

D-P-S-I causal sequence

Mitigation-Abatement of drivers & pressures

Private sphere: households, businesses, ...

Self-interest prevails

Damages & Adaptation to impacts

Public domain: commons, public goods

Politics must prevail

VDPSI@R framework addressing climate change. Causal sequence Values → Driving Forces → Pressures → State → Impacts @Response, structured as a Policy Planning Process addressing all components of the causal sequence.

Climate change DPSI *hourglass* format Every emitted ton CO₂-eq same weight in global CO₂-eq concentration

However,

not a valid argument for uniform treatment of diverse driving forces, diverse pressures and diverse impacts e.g. not a foundation for the 'Global Uniform Carbon Price' discourse

Decomposition

Present energy use causes emissions, waste, risks, ...

<u>4. Nuclear fuel</u> < 2% of final energy use

Eternal waste problems Accidents, Catastrophes Spreading Atomic Weapons

Decomposition

Decomposition of energy-related CO₂ emissions: Ehrlich-Holdren / Kaya Identity

CO ₂ = People	*	Affluence.	*	Energy	*	CO ₂
emissions capita		€ GDP		intensity		intensity
Gigaton = Gigacap	*	€/cap	*	kWh/€	*	CO ₂ /kWh

Mainly Political are:
 People ~ demography, migration, culture, traditions
 Affluence ~ growth, trade, technology, distribution, ...
 Self-interest [hold and aim for more]

Mainly Technical are:

Energy intensity = Structure (activity/€) * Efficiency (kWh/activity) Conservation means changing structure, i.e. type and amount of activities. Measuring Efficiency of activities is difficult; aggregate efficiency is spurious.

CO₂ intensity: highly dependent on type of energy used, in case: fossil fuels \Leftrightarrow Low/zero carbon energy (renewable, atomic power)

CO₂ Emissions & 4 composing factors (period 1975-2002; based on IPCC AR4 2007 data)

IPCC AR5 WG3 (2014): GHG emissions rise with growth in GDP and population; long-standing trend of decarbonisation of energy reversed.

Decomposition of the Change in Total Global CO₂ Emissions from Fossil Fuel Combustion

Decomposition

Decompose deeper to detailed facts on activities, people, energy types, ...

$$\frac{\text{CO}_2 \text{ emissions}}{\text{Person}} = \frac{\$ \text{GDP}}{\text{Person}} \times \frac{\text{kWh energy}}{\$ \text{GDP}} \times \frac{\text{CO}_2 \text{ emissions}}{\text{kWh energy}}$$
Wealth Intensity of Peoples
Wealth Intensity = $\frac{\$ \text{GDP}}{\text{Person}} = \sum_{A} \frac{P_A \text{ x Activity}_A}{\text{Person}}$
(3)
Energy Intensity of Wealth
Energy Intensity = $\frac{\text{kWh energy}}{\$ \text{GDP}} = \sum_{A} \frac{P_A \text{ x Activity}_A}{\$ \text{GDP}} \times \frac{\text{kWh energy}}{P_A \text{ x Activity}_A}$
(4)

CO₂ emissions Intensity: energy mix x intensity

$$CO_2$$
 Intensity = $\frac{CO_2 \text{ emissions}}{\text{kWh energy}} = \sum_E \frac{\text{kWh type}_E}{\text{kWh energy}} \times \frac{CO_2 \text{ emissions}}{\text{kWh type}_E}$ (5)

Metrics of country performance in applying financial incentivizing instruments {Cc = currency of a country}

Ċc Addition: { TN + SP } - { TP + SN } Ratio = Ċc Addition / Ċc Public budget

Evaluation of the frames

Metabolism (material balances)

Conceptual interesting: combines depletion & pollution & degradation of nature by human *activities*

A foundation of 'ecological economics' Yes comprehensive, No practical models

• VDPSI@R

Conceptual strong: connects human values (V), activities (DP) with nature & environment (SI) and the policy range (@R) Practical frame to describe & analyse various environmental issues & policies – also Climate Change ! Non-linear causalities

! Respect full diversity of components

Decomposition

Conceptually straightforward (identity formula) Used to analyse past energy-related CO₂ emissions of countries, e.g. IPCC, AR5, WG3, Ch.5 ! Absent in UNFCCC COP deliberations ! Interdepence among components; OK as cross-section (short-term); not OK for long-term (beyond 5 years) extrapolations.

